Gas in Clusters: X-ray and SZE Observations Max Bonamente, *UAHuntsville and NASA NSSTC*Esra Bulbul *and* Nicole Hasler, *UAHuntsville*Marshall Joy, *NASA MSFC*and collaborators on the Sunyaev-Zeldovich Array project #### **OUTLINE** - Development of new analytic model of the ICM based on the polytropic equation of state and validation with Chandra X-ray and Sunyaev-Zeldovich Array observations - Comparison on X-ray and SZE measurements - Measurement of the gas fraction independent of cosmology - Measurement of the Hubble constant - The effect of He sedimentation on cluster masses | hydrogen
1 |) | | .5. | | 25 | | 1.54 | s | - 5 | ** | 9.5.A | 1.77 | #CC. | 5.6 | 55. | 5.5. | - 57 | helium
2
He | |---------------------------------|----------------------------------|--------------------------|---------------------------------|-------------------------------|--------------------------|----------------------------|----------------------------|------------------------------|-------------------------------|----------------------------------|----------------------------|-------------------------------|---------------------------|----------------------------------|--------------------------------|---------------------------------|---------------------------------|------------------------------| | 1.0079
3
Li | beryllium
4
Be | | | | | | | | | | | | boron
5 | carbon
6
C | nitrogen
7 | oxygen
8 | fluorine
9 | 10
Ne | | 6.941
sodium
11 | 9.0122
magnesium
12 | | | | | | | | | | | | 10.811
aluminium
13 | 12.011
silicon
14 | 14.007
phosphorus
15 | 15.999
sulfur
16 | 18.998
chlorine
17 | 20.180
argon
18 | | Na
22.990
potassium
19 | Mg
24.305
calcium
20 | | scandium
21 | titanium
22 | vanadium
23 | chromium
24 | manganese | iron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | 26.982
gallium
31 | 28.086
germanium
32 | 30.974
arsenic
33 | 32.065
selenium
34 | 35.453
bromine
35 | 39.948
krypton
36 | | 39.098
rubidium
37 | Ca
40.078
strontium
38 | | \$c
44.956
yttrium
39 | 47.867
zirconium
40 | 50.942
niobium
41 | 51.996
molybdenum
42 | 54.938
technetium
43 | 55.845
ruthenium | 58.933
rhodium
45 | 58,693
palladium
46 | 63.546
silver
47 | Zn
65.39
cadmium
48 | 69.723
indium
49 | 72.61
tin
50 | As
74.922
antimony
51 | 78.96
tellurium
52 | Pr
79.904
iodine
53 | 83.80
xenon
54 | | 85.468
caesium
55 | Sr
87.62
barium
56 | 57-70 | 88.906
lutetium
71 | Zr
91.224
hafnium
72 | 92.906
tantalum
73 | 95.94
tungsten
74 | Tc [98] rhenium 75 | Ru
101.07
osmium
76 | Rh
102.91
iridium
77 | Pd
106.42
platinum
78 | Ag
107.87
gold
79 | Cd
112.41
mercury
80 | 114.82
thallium
81 | \$n
118.71
lead
82 | Sb
121.76
bismuth
83 | Te
127.60
polonium
84 | 126.90
astatine
85 | Xe
131.29
radon
86 | | Cs
132.91
francium | Ba
137.33
radium | * | Lu
174.97
lawrencium | Hf
178.49
rutherfordium | Ta
180.95
dubnium | 183.84
seaborgium | Re
186.21
bohrium | Os
190.23
hassium | 192.22
meitnerium | Pt
195.08
ununnilium | Au
196.97
unununium | Hg
200.59
ununbium | 204.38 | Pb
207.2
ununquadium | Bi
208.98 | Po [209] | At | Rn | | 87
Fr | 88
Ra
[226] | 89-102
* * | 103
Lr
[262] | 104
Rf
[261] | 105
Db | 106
Sg
[266] | 107
Bh | 108
Hs
[269] | 109
Mt
[268] | Uun
[271] | 111
Uuu
[272] | 112
Uub | | 114
Uuq | ē. | | | | *Lanthanide series * * Actinide series | - 1 | lanthanum | | | | promethium | samarium | europium | gadolinium | terbium | dysprosium | holmium | erbium | thulium | ytterbium | |-----|-----------|---------|--------------|---------|------------|-----------|-----------|------------|-----------|-------------|-------------|---------|-------------|-----------| | - 1 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | | ١ | l a | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dv | Ho | Fr | Tm | Yh | | - 1 | La | CC | | 144 | 1 111 | | Ц | Ou | 10 | Dy | 110 | I I | | 1 10 | | ı | 138.91 | 140.12 | 140.91 | 144.24 | [145] | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | | -1 | actinium | thorium | protactinium | uranium | neptunium | plutonium | americium | curium | berkelium | californium | einsteinium | fermium | mendelevium | nobelium | | 1 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | | ١ | Λ. | Th | Pa | TT. | Np | Dii | Λm | Cm | Bk | Cf | Fe | Em | Md | No | | - 1 | AC | 111 | Га | U | IAD | Fu | AIII | CIII | DN | CI | LS | Fm | IVIC | 140 | | Į | [227] | 232.04 | 231.04 | 238.03 | [237] | [244] | [243] | [247] | [247] | [251] | [252] | [257] | [258] | [259] | # 1. Development of a new analytic model of the ICM Presently, Vikhlinin et al. (2006) and Nagai et al. (2007) models are main options when fitting X-ray and SZE observations Figure: The distribution of the surface brightness (left) and temperature (right) for A133 (Vikhlinin et al. 2006) Models of density and temperature produce excellent goodness of fit to X-ray data, but are not ideal for a joint modeling of the pressure, which is the Sunyaev-Zeldovich Effect observable. #### 1.1 The mass density distribution Assume a mass density (for the total gravitational mass) following a distribution by Suto et al. (1998) $$\rho_{tot}(r) = \frac{\rho_i}{(r/r_s)(1 + r/r_s)^{\beta}}$$ # 1.2 The gas density and temperature Use a polytropic equation of state for the hot gas: $$\left| \frac{n_{e,poly}(r)}{n_{e0}} = \left[\frac{T_{poly}(r)}{T_0} \right]^n \right|$$ ## 1.3 The hydrostatic equilibrium equation Assume dynamic equilibrium of mass and the hot gas: $$\frac{1}{\mu m_p n_e(r)} \frac{dP_e}{dr} = -\frac{GM(r)}{r^2}$$ 1.4 <u>Modification of equations to account for cooling of gas</u> The model derived so far is modified by a phenomenological `core taper' function (identical to that of Vikhlinin et al. 2006): $$\tau_{cool}(r) = \frac{\alpha + (r/r_{cool})^{\gamma}}{1 + (r/r_{cool})^{\gamma}}$$ and therefore the temperature and density profiles becomes: $$T(r) = T_{poly}(r)\tau_{cool}(r)$$ $$= T_0 \left(\frac{1}{(\beta - 2)} \frac{(1 + r/r_s)^{\beta - 2} - 1}{r/r_s(1 + r/r_s)^{\beta - 2}}\right) \frac{\alpha + (r/r_{cool})^{\gamma}}{1 + (r/r_{cool})^{\gamma}}$$ $$n_e(r) = n_{e,poly}(r)\tau_{cool}^{-1}$$ $$= n_{e0} \left(\frac{1}{(\beta - 2)} \frac{(1 + r/r_s)^{\beta - 2} - 1}{r/r_s(1 + r/r_s)^{\beta - 2}}\right)^n \frac{1 + (r/r_{cool})^{\gamma}}{\alpha + (r/r_{cool})^{\gamma}}$$ Figure: The distribution of the temperature and density as function of radius (Bulbul et al. 2010) #### In summary: - 3 shape parameters and 2 normalizations for global properties - 3 additional parameters for cool-core clusters #### 2. Validation of the model with Chandra observations 2.1 <u>Application to imaging spectroscopy Chandra observations</u> Two high S/N observations of Abell 2204 and Abell 1835 are fit well by the model Figure: Images of Abell 1835 and Abell 2204, 0.7-7 keV band, Chandra observations Figure: Fit of the polytropic model to the surface brightness and temperature profiles (Bulbul et al. 2010) # 3. Application to Sunyaev-Zeldovich Array observations • Observable: Temperature decrement $$\Delta T_{CMB} = f_{(x,T_e)} T_{CMB} \int \sigma_T n_e \frac{k_B T_e}{m_e c^2} dl$$ #### 3.1 <u>The Sunyaev-Zeldovich Array interferometer</u> The SZA is an 8-element interferometer located in central California, operating at 30 GHz and 90 GHz Figure: The SZA interferometric array as part of CARMA, at the Cedar Flats location in California Figure: SZA images of Abell 1835 and Abell 2204 at 30 GHz (Hasler et al. 2010) #### Joint fit to Chandra and SZA data Figure: Radial plots of surface brightness and temperature (X-ray), and real part of the visibilities as function of (u,v) radius (SZE) for Abell 1835 and Abell 2004 (Hasler et al. 2010) # 3.2 <u>Measurement of masses and distances without priors on cosmology</u> Joint X-ray and SZE observations results in a unique method of measurement of masses that is cosmology independent: $$S_{\mathrm{x}} = \frac{1}{4\pi(1+z)^4} D_{\mathrm{A}} \int n_e(\ell)^2 \Lambda_{ee}(T_e(\ell), A(\ell)) d\ell$$ $$\Delta T_{\rm sz} = T_{\rm\scriptscriptstyle CMB} f(x) D_{\rm\scriptscriptstyle A} \int \sigma_{\rm\scriptscriptstyle T} n_e(\ell) \frac{k T_e(\ell)}{m_e c^2} d\ell$$ Both density and distance can be measured simultaneously, masses calculated without assuming cosmological parameters . | | Iv | IEASUREMI | MEASUREMENTS AT R_{500} | | | | | | |------------|--------------------------|-------------------------|---------------------------|----------------------------|--------------------------|--------------------------|-------------------------|--------------------------| | Cluster | r_{2500} | $M_{\rm gas}$ | $M_{ m tot}$ | $f_{\mathbf{gas}}$ | r_{500} | $M_{\mathbf{gas}}$ | $M_{ m tot}$ | f_{gas} | | | (") | $(10^{13} M_{\odot})$ | $(10^{14} M_{\odot})$ | | (") | $(10^{13} M_{\odot})$ | $(10^{14} M_{\odot})$ | | | Abell 1835 | $152.2\pm^{27.5}_{22.1}$ | $5.49\pm_{1.15}^{1.28}$ | $4.12\pm_{0.34}^{0.31}$ | $0.132\pm_{0.020}^{0.022}$ | $313.6\pm_{43.9}^{55.8}$ | $13.43\pm_{2.83}^{3.17}$ | $7.44\pm_{0.73}^{0.68}$ | $0.180\pm_{0.03}^{0.03}$ | | Abell 2204 | $182.9\pm_{25.4}^{32.3}$ | $5.24\pm_{0.74}^{0.87}$ | $3.52\pm_{0.18}^{0.20}$ | $0.149\pm_{0.015}^{0.017}$ | $402.4\pm_{53.1}^{67.6}$ | $14.86\pm_{2.10}^{2.50}$ | $7.49\pm_{0.50}^{0.52}$ | $0.200\pm_{0.02}^{0.02}$ | Figure: Measurement of the gas fraction from joint X-ray and SZE data, for Abell 1835 and Abell 2204 (Hasler et al. 2010) If one wants to measure masses at a given density contrast, such as $\boldsymbol{r}_{_{500}}$, then the calculation of the outer radius carries an uncertainty. $$M_{\rm tot}(r_{\Delta}) = 4/3\pi r_{\Delta}^3 \Delta \rho_c$$ ## 4. Cosmological applications - 4.1 <u>Comparison of X-ray and SZE measurements</u> Comparison between masses inferred from the two observables can be used to determine if X-rays and the SZE observe the same gas (e.g., if there is non-thermal X-ray emission or not) - In Laroque et al (2006) we measured the gas mass from the two observables (Chandra and OVRO/BIMA data), and found consistent results. - Good agreement between X-rays and SZ indicated from Chandra and SZA data (Hasler et al. 2010) - Work by several authors (e.g.,Lieu et al. 2006) from WMAP data reports discrepancy in the analysis of samples of clusters - Lueker et al (2010) indicate a possible discrepancy between X-ray and SPT power spectrum; more work in progress using Chandra and SPT observations of individual clusters. Figure: preliminary results on the Chandra/SPT Comparison (Plagge et al. 2011) #### 4.2 <u>Use of the gas fraction template for cosmology</u> Work in progress on the measurement of the gas fraction independent of cosmology, for a sample of 30 clusters at z=0.1-1.1. Knowing the distribution of f_{gs} as function of redshift can be used to constrain dark energy (Sasaki 1996, Pen 1997, Allen et al. 2008, Ettori 2009). Figure: The X-ray method of measuring masses depends on cosmology (from Allen et al. 2008) # 4.3 <u>Measurement of the Hubble constant</u> Using $D_A(z)$ information alone, the measurement of the Hubble constant depends on priors on Ω_A . Figure: Measurement of the Hubble constant from earlier OVRO/BIMA observations (Bonamente et al. 2006) Work in progress on a sample of 30 clusters at z=0.1-1.1... # 4.4 <u>The effect of He sedimentation on cluster masses</u> Radial gradients of He (and other elements) can lead to biases in the measurement of cluster masses Figure:Effect of the Peng & Nagai 2009 He sedimentation model on mean molecuar numbers (Bulbul et al. 2010) Figure: Effect of the Peng & Nagai 2009 He sedimentation model on cluster masses (Bulbul et al. 2010) Actual *measurement* of He sedimentation can be obtained by combining X-ray and SZE observations, though very challenging at present. #### CONCLUSIONS - We developed and validated a new model for the analysis of X-ray and SZE observations of galaxy clusters. - The model is especially designed for applications in which both X-ray and SZE observations must be modeled simultaneously - Applications include the measurement of gas fraction independent of cosmology, constraints on Hubble constant and dark energy, and the sedimentation of heavy ions #### 3.3 Comparison of new model with Nagai et al. (2007) model Two models provide equally acceptable fits, and measure the same Y, by using the same number of degrees of freedom. | Cluster | $Y_{cyl}(10^{-5})$ | |-------------------|--------------------------| | <u>Abell 1835</u> | | | Poly | $9.90\pm_{0.78}^{0.85}$ | | N08 | $10.01\pm^{0.84}_{0.76}$ | | <u>Abell 2204</u> | | | Poly | $5.57\pm^{0.60}_{0.52}$ | | N08 | $6.05\pm^{0.80}_{0.64}$ | #### 3.4 Preliminary comparison of with Vikhlinin et al. (2006) model (5 model parameters) (7 model parameters)